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Abstract
Progression-free survival (PFS) is an important clinical metric for comparing and 
evaluating similar treatments for the same disease within oncology. After the com-
pletion of a clinical trial, a descriptive analysis of the patients' PFS is often performed 
post hoc using the Kaplan–Meier estimator. However, to perform predictions, more 
sophisticated quantitative methods are needed. Tumor growth inhibition models 
are commonly used to describe and predict the dynamics of preclinical and clinical 
tumor size data. Moreover, frameworks also exist for describing the probability of 
different types of events, such as tumor metastasis or patient dropout. Combining 
these two types of models into a so-called joint model enables model-based predic-
tion of PFS. In this paper, we have constructed a joint model from clinical data 
comparing the efficacy of FOLFOX against FOLFOX + panitumumab in patients 
with metastatic colorectal cancer. The nonlinear mixed effects framework was 
used to quantify interindividual variability (IIV). The model describes tumor size 
and PFS data well, and showed good predictive capabilities using truncated as well 
as external data. A machine-learning guided analysis was performed to reduce un-
explained IIV by incorporating patient covariates. The model-based approach il-
lustrated in this paper could be useful to help design clinical trials or to determine 
new promising drug candidates for combination therapy trials.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Combination therapies play a leading role in modern anticancer treatment and 
an important clinical metric for evaluating different treatments in oncology is 
progression-free survival (PFS). PFS is often estimated using the Kaplan–Meier 
estimator after the study is complete.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can a joint tumor growth inhibition and event model be used to predict PFS be-
fore the completion of a clinical trial? How much data are required to perform 
adequate predictions and how well does it perform for different treatment arms, 
including combination therapies.
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INTRODUCTION

Combination therapies are one of the cornerstones of 
modern cancer treatment.1 Their effectiveness has been 
attributed to their ability to combat patient variability 
in response, mitigate resistance, and induce synergistic 
effects.2–4 The development of new and improved combi-
nation therapies is challenging due to high attrition rates 
and long development times.5,6 Therefore, more research 
is needed to support early and accurate identification of 
promising new anticancer candidates and combinations.

In clinical cancer studies, overall survival (OS) is de-
fined as the time from the start of treatment (or diagno-
sis) until death, and is the gold standard for evaluating 
treatments in oncology clinical trials.7 Another important 
end point is progression-free survival (PFS), defined as 
the time until tumor progression (or death), based on the 
Response Evaluation Criteria in Solid Tumors (RECIST) 
criteria.8 PFS can be used as a measure of clinical efficacy 
directly, or as a surrogate for OS for certain diseases.9

During clinical studies the disease status (e.g., tumor 
size and metastasis) is monitored and recorded, and used 
to construct a PFS curve, typically using the Kaplan–
Meier estimator.10 This allows, for example, compari-
sons of median PFS times between different treatments. 
However, predictions for alternative treatment schedules 
or patient populations require more sophisticated quanti-
tative approaches.11

Mathematical modeling is commonly used to support 
the drug development process. Models are developed to 
capture tumor size dynamics, and to quantify the risks 
of detrimental events as a result of the disease.12–15 Joint 
modeling can be utilized to connect time series and event 
data (e.g., tumor size, and metastasis or death).16 This 
approach leverages data more efficiently than sequential 
approaches.17,18

By constructing a joint model for clinical data, using the 
nonlinear mixed-effects (NLME) framework,19 and com-
bining it with a model accounting for dropout, a model-
based approach for determining PFS can be developed. 
With such a model, one can quantify between-subject 

variability, and estimate how different covariates affect the 
individual parameters. This should increase the accuracy 
when performing predictions on new patients. Moreover, 
the modeling approach also allows predictions of different 
treatment schedules or patients' future responses. Such 
models have previously been investigated and tested with 
several different monotherapies.20,21

In recent decades, large amounts of data have been 
gathered in oncology, where advances in, for example, 
single-cell technologies, and decreased sequencing costs 
have enabled the generation of large amounts of molecu-
lar data.22,23 Machine learning (ML) is a popular approach 
for analyzing such high-dimensional data,24 and has 
been used in oncology to for example, estimate the cor-
relation between covariates and individual parameters, 
or PFS time, using methods such as RandomForest and 
LASSO.25,26

In this paper, we have three aims. First, to extend the 
model-based PFS prediction described by Yu et al.21 to 
combination therapies. This is accomplished by joining a 
tumor growth inhibition (TGI) model to a time-to-event 
(TTE) model for non-target progression (NTP). An addi-
tional TTE model is also developed to account for patient 
dropout.27 The models are calibrated to clinical data gath-
ered from the PRIME study where FOLFOX was tested 
against FOLFOX + panitumumab.28 Second, to test the 
PFS model's predictive capabilities by both predicting pa-
tients' future PFS as well as predicting the PFS for a dif-
ferent study. Last, we use ML to identify which covariates 
can help to explain inter-individual variability (IIV), po-
tentially improving our understanding of how different 
subpopulations respond to treatment.

METHODS

Data

The PRIME study was a randomized phase III study that 
investigated FOLFOX + panitumumab (N = 325) against 
FOLFOX alone (N = 331), in patients with wild-type rat 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The joint model we present was able to adequately describe the PFS for both treat-
ment groups under analysis. The model's predictive capabilities were deemed to 
be good after two external validations were performed with it.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The efficacy of a drug or drug combination could potentially be evaluated earlier 
in the drug development process.
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sarcoma virus (RAS) mutated metastatic colorectal can-
cer (mCRC).28 FOLFOX is a combination chemotherapy 
regimen consisting of oxaliplatin, folinic acid, and fluo-
rouracil and is a first-line standard treatment for this 
type of cancer.29 FOLFOX was administered every sec-
ond week by the following regimen: oxaliplatin 85 mg/
m2 intravenous (i.v.) infusion (day 1) and leucovorin 
200 mg/m2 i.v. (day 1 + 2) followed by fluorouracil (5-
FU) 400 mg/m2 i.v. bolus (day 1 + 2) followed by 5-FU 
600 mg/m2 i.v. (day 1 + 2). Panitumumab is a human-
ized monoclonal antibody that inhibits the epidermal 
growth factor receptor (EGFR),30 and was administered 
once every second week (6 mg/kg). Data from this study 
were collected via Project Data Sphere.31 We extracted 
clinical parameters (e.g., laboratory tests, age, and RAS 
status) alongside PFS data, including tumor size time 
series and event data for NTP, death, and uninformative 
dropout.

According to the RECIST (version 1.1) guidelines, 
tumor lesions are classified as either target or non-target 
lesions. At most, five target lesions (usually the largest) 
are selected. Any remaining lesions are classified as non-
target lesions. Target lesions are quantitatively measured 
during the trial, whereas non-target lesions are monitored 
only qualitatively.32

The PFS is determined by either target progression (TP) 
or NTP. TP occurs if the sum of the largest target diame-
ters (SLDs) has increased by 20% (and 5 mm) compared 
to nadir.30 NTP occurs if a new lesion appears, non-target 
lesions are deemed unequivocally progressing, or the pa-
tient dies. Rarely, TP and NTP occur simultaneously, in 
which case the patient is classified as TP. Patients without 
TP or NTP at their final checkup are censored (dropout). 
The most common reasons for dropout cited in the lit-
erature are adverse events and personal issues.33 We de-
note the time these events occur by TTP, TNTP, and TDO, 
respectively.

Patients were monitored once every 2 months, by two 
different radiologists, and to avoid the need to model 
the inherent variability of this we primarily used data 
from the first radiologist. Data from the second radiolo-
gist were only used when measurements from the first 
were not available. We exclude patients with a mutation 
in RAS exon 2 or that only had one SLD measurement. 
The remaining data comprise 127 and 121 patients in the 
FOLFOX and FOLFOX + panitumumab arms, respec-
tively. Panitumumab alone was not tested in this study. 
However, it was tested in the ASPECCT study, in which 
two patient populations with mCRC baseline wild-type 
RAS with emergent or non-emergent RAS mutations were 
treated.34 We extracted the PFS curves corresponding to 
the two arms, and constructed a single PFS curve as a 
weighted average with respect to the number of patients 

in each arm. An overview of patient characteristics for 
both studies can be found in Appendix S1.

Tumor growth inhibition model

To model the SLD time series, we use a TGI model shown 
in Figure 1.20 If a patient is given FOLFOX, the tumor dy-
namics are described by the following equations:

where kg is the inherent tumor growth rate, SLD0 the 
initial SLD, and ks,FOLFOX the drug-induced killing rate of 
FOLFOX. We model FOLFOX as an exponentially decay-
ing chemotherapy by:

where aFOLFOX and �FOLFOX are parameters correspond-
ing to the potency and development of resistance, re-
spectively. As we do not have pharmacokinetic (PK) 
data for each patient, we drive the pharmacodynamic 
(PD) model using the total dose per cycle (14 days), Di,  
assuming the same treatment schedule for all individ-
uals, as specified in the study protocol. In the case of 
FOLFOX, we combine the three individual drugs' total 
doses.

dSLD

dt
= kg SLD − ks,FOLFOX SLD,

SLD(0) = SLD0,

ks,FOLFOX=aFOLFOX DFOLFOX e
−�FOLFOX t ,

F I G U R E  1   A schematic representation of the TGI model for 
two drugs. SLD denotes the sum of the longest diameters of the 
target lesions, and kg the net tumor growth rate constant before the 
start of treatment. Parameters ai and Di are the potency and the 
total dose per cycle of drug i, respectively. SLD, sum of the largest 
target diameter; TGI, tumor growth inhibition.
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Because panitumumab is an EGFR inhibitor, we model 
it as reducing the tumor growth rate.35 The tumor dynam-
ics for patients receiving FOLFOX and panitumumab si-
multaneously are given by:

where

We also tried using a Imax function for panitumumab 
but because we only have one dose level and use the av-
erage dose this led to similar but slightly worse results. 
Moreover, the potency function we use can be seen as a 
linear approximation of an Imax function valid for small 
(non-saturating) exposures.

Without data on panitumumab, given as a monother-
apy, we must assume that the interaction effects between 
the drugs are so small that they can effectively be ignored. 
It is reported in the literature that the addition of FOLFOX 
to panitumumab resulted in no additional efficacy com-
pared to monotherapy.36 We evaluate this using the model 
to predict the PFS for panitumumab and compare it to the 
ASPECCT study.

We tried estimating a resistance term for each drug, 
but this resulted in very poor precision on the estimates. 
Therefore, we let �FOLFOX = �Pani = � , and thus the model 
assumes that a patient given the combination therapy be-
comes resistant to both treatments simultaneously, which 
is not necessarily the case in reality.37

We use the NLME framework to account for the IIV in 
the data and let kg, SLD0, �, and aFOLFOX be log-normally 
distributed in the population. Hence, the specific value of 
the parameters for individual i is described by, �i = �me

�i, 
where �m = (kg, SLD0, � , and aFOLFOX) denotes the median 
values and �i ∼MN(0,Ω) the random effects for individ-
ual i. The Ω is the covariance matrix and no correlation 
between random effects was assumed. We also tried to es-
timate a random effect for aPani, but this led to very high 
correlation with aFOLFOX, most likely due to the lack of 
monotherapy data for panitumumab. Finally, the observa-
tional model for SLD contained an additive and a propor-
tional term.

Time-to-event models

The NTP and dropout events are accounted for 
using TTE models. The survival function, S(t), is de-
fined as the probability of no event before time t (i.e., 

S(t) = Pr(T > t) ), where T is the time the event occurs. 
Survival is often expressed using a hazard function, de-
fined as the event rate at time t conditional on survival 
until time t or later.38

We utilize a joint-modeling approach where the rate of 
change of SLD is linked with the hazard function for NTP 
events, denoted by h1. That is:

where � is the baseline hazard of the event, and � is a scaling 
factor linking the hazard to SLD rate of change. Thus, better 
target lesions’ response decreases the risk of NTP.

Dropout is not linked with patient response and is 
modeled separately using a parametric survival model. We 
tested several different common models, such as the expo-
nential, Gompertz, and Weibull, and found that a Weibull 
model best fit the data. The hazard function associated 
with the Weibull survival model is given by:

where k is the shape parameter and � the scale parameter or 
characteristic time.

Progression-free survival prediction

To predict PFS, we generate virtual patients (sample size 
and times based on the actual study) from the estimated 
population distributions. Time series, including meas-
urement noise, are then created and TTP is calculated for 
each virtual patient. Individual survival curves for NTP 
are created and from these TNTP is sampled, and TDO for 
each patient is sampled from the parametric model. These 
three times are then be compared and the one that occurs 
first is chosen as the PFS time and event for each patient. 
If dropout occurs first, that individual is censored at that 
time. This process is then repeated 1000 times to obtain a 
good prediction as well as a 95% confidence interval for 
the prediction. The algorithm for the prediction is sum-
marized below.

1.	 Generate virtual patients and simulate (noisy) time se-
ries of SLD from the estimated population distributions.

2.	 Estimate TTP from the time series.
3.	 Construct individual survival curves and sample TNTP.
4.	 Sample TDO using the parametric model.
5.	 Pick min

(

TTp,TNTP, and TDO
)

, record which event trig-
gered PFS, and repeat 1000 times.

dSLD

dt
=
(

kg − ks,Pani
)

SLD − ks,FOLFOX SLD,

SLD(0) = SLD0.

ks,Pani = aPani DPani e
−�Pani t .

h1(t) =max

(

�
dSLD(t)

dt
+ �, 0

)

,

h2(t) =
k

�
⋅

(

t

�

)k−1
,
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We perform two validation analyses using truncated and 
external data, respectively. First, we predict the PFS for pa-
nitumumab monotherapy based on the ASPECCT study, 
using the algorithm above, and assuming similar patient 
characteristics to the PRIME study. Second, we recalibrate 
the PFS model using truncated data from the PRIME study 
(at 3, 7, or 27 months) and make a forward prediction of 
the survival curve, median PFS, and hazard ratio for the re-
mainder of the study. As data are increasingly truncated, 
the precision of the parameter estimates becomes worse. To 
take this uncertainty into account, we assume normally dis-
tributed fixed effects with the point estimates as the means, 
and the standard errors as standard deviations.

Covariate analysis

The above analysis assumes the patient characteristics of 
simulated studies as the PRIME study. We now quantify 
the correlation between the recorded baseline covariates 
and Empirical Bayes Estimates (EBEs) of each patient, to 
reduce unknown IIV and allow for more accurate predic-
tions of new patients. We thus obtain new random effects 
on the following form:

where Zi are the measured covariate values for patient i and 
w is the estimated weight of each covariate effect.

To identify covariates to include, we use three regres-
sion methods: linear regressions, LASSO, and ridge re-
gression along with two decision tree methods: Recursive 
Partitioning and RandomForest.39 The hyperparameters 
for the penalized regression methods are tuned by perform-
ing cross-validation with 10 folds, and choosing the hyper-
parameters resulting in the smallest mean square error. 
Covariates that are significant by the regression methods, 
or top three in importance by the decision tree methods, 
are chosen as candidates to be included in the final model.

The parameter estimation is then rerun with all can-
didate covariates added, and the fixed effects are fixed at 
their previously estimated values. The covariate whose 
weight has the largest RSE for each parameter is iteratively 
removed until all weights are estimated with sufficient 
precision (RSE < 50%). We test the following 28 baseline 
covariates: albumin, alkaline phosphatase, creatine, lac-
tate dehydrogenase, hemoglobin, platelets, white blood 
cells, carcinoembryonic antigen, age, weight, height, eth-
nicity, sex, Eastern Cooperative Oncology Group status, 
number of metastases, histology, number of target lesions 
at baseline, baseline SLD, type of diagnosis (colon or rectal 
cancer), metastasis to the liver, time since diagnosis, prior 
surgery, mutation/wild type/failure in KRAS exon 3 or 4, a 

mutation in NRAS exon 2, 3, or 4, and a mutation in BRAF 
exon 15. We compare our results to those obtained using 
the automated covariate builder in Monolix (covSAMBA-
COSSAC) on the full set of covariates.

Computational methods

The parameters of the TGI model and NTP TTE model 
were estimated simultaneously using the joint mod-
eling functionality of Monolix40 and the Stochastic 
Approximation Expectation Maximization algorithm. 
The joint model was exported to R studio41 to generate 
visual predictive checks (VPCs) of the predicted popula-
tion SLD curves. The parametric dropout model was also 
calibrated in Monolix and all three models were exported 
to Mathematica,42 where the PFS model was created. The 
covariate analysis was performed in R41 using the pack-
ages glmnet, randomForest, and rpart.

RESULTS

Tumor growth inhibition and time-to-
event models

The TGI model was able to describe the SLD data ad-
equately. Estimates of parameters are shown in Table 1. 
All parameters were estimated with acceptable precision 
(RSE < 25%). Examples of individual fits are shown in 
Figure 2, and VPCs can be found in Figure S1. Model pre-
dictions versus the observations, along with residual plots, 
can also be found in Figures S2 and S3.

The TTE models were also able to describe the data 
sufficiently well. We found, as previously mentioned, that 
a Weibull model fits the dropout data best and Kaplan–
Meier VPC plots for the NTP model can be found in 
Figure S4. Parameters were estimated with acceptable pre-
cision for both TTE models and are presented in Table 1.

Progression-free survival model

After validating each model, they were combined to 
form the PFS model. Predictions with this model were 
performed and the results are shown in Figure  3. All 
simulations involved in the predictions were performed 
1000 times. The figure shows that the model was able to 
describe the PFS well for both treatment groups in the 
PRIME study. Furthermore, the proportions of events in 
the TP, NTP, and dropout categories for virtual patients 
were in good agreement with what was observed in the 
PRIME study. For the FOLFOX treatment arm, 47%, 

�i = �m e�i+Zi w,
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38%, and 15% of patients' PFS were set by TP, NTP, and 
dropout, respectively. For the virtual patients, the same 
numbers were 44%, 35%, and 21%, respectively, with a 

standard deviation of 4%. The numbers for the patients 
given FOLFOX + panitumumab arm were 42%, 44%, and 
14%, and for the virtual patients, the numbers were 48%, 
32%, and 19%, with a standard deviation of 5%.

The predicted median PFS time for patients with wild-
type RAS mutated mCRC given panitumumab as mono-
therapy was 4.7 (4.2–7.0) months and a prediction for the 
entire PFS curve can be seen in Figure 3. Furthermore, the 
model was recalibrated with truncated data and three ex-
amples of how well the model could predict the rest of the 
data are shown in Figure 4. The data were cut after ~27, 
7, and 3 months, respectively. Here, the random effect on 
aFOLFOX was not included because including it led to high 
correlation between random effects. Observed hazard ra-
tios and median PFS for the entire PRIME study and the 
data we modeled, along with the predictions, are shown 
in Table 2.

Covariate analysis

The ML algorithms identified 20 candidate covariates that 
could influence the random effects. The ones estimated 
with sufficient precision are shown in Table 3. For exam-
ple, the most important covariate for explaining the vari-
ability in SLD0 was the number of lesions at baseline.

T A B L E  1   Estimated parameters for the TGI and TTE models.

Parameter Units
Estimate 
(RSE%)

BSV 
(RSE%)

TGI
SLD0 mm 123 (5) 0.76 (5)
kg 1/month 0.074 (7) 0.53 (11)
aFOLFOX m2/(mg month) 2.0 × 10−4 (4) 0.41 (7.66)

aPani kg/(mg month) 7.3 × 10−3 (15)
� 1/month 0.18 (10) 1.06 (7)

TTE
� 1/mm 0.0041 (22)
� 1/month 0.035 (19)
k – 1.50 (11)
� month 36 (14)

Observational error
s1 

a Mm 2.27 (12)
s2

b – 0.15 (5)

Abbreviations: BSV, between-subject variability; SLD, sum of the largest 
target diameter; TGI, tumor growth inhibition; TTE, time-to-event.
aStandard deviation of additive error.
bStandard deviation of proportional error.

F I G U R E  2   Individual model predictions (black curves) plotted together with the experimental data (red dots). The upper two rows show 
examples for the FOLFOX treatments arm, and the lower two for the FOLFOX + panitumumab arm. SLD, sum of the largest target diameter.
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We estimate the total reduction of variability as 1 − tr(ΩC)
tr(Ω)

, 
where ΩC is the covariance matrix estimated after includ-
ing covariates. The automated covariate builder found 
many similar covariates, see Appendix S1, and it reduced 
the variability by 33%, which compares well with our 
method which reduced it by 30%.

DISCUSSION

Tumor growth inhibition and time-to-
event models

As no individual PK data were available, we let the total dose 
per cycle drive the PD model. Similar approaches can be 
found in the literature.20,21 Moreover, a PK model describing 
the daily dynamics of the drugs would most likely not sig-
nificantly change the results, because the size of the tumors 
is only measured approximately once every second month.

The TGI model we use is similar to models previously 
used to describe SLD time series data.20,21,43 Our model 
was able to describe data well on both an individual level 
(Figure  2) and a population level (Figure S1). All pa-
rameters were estimated with acceptable precision and 
the residuals were approximately normally distributed. 
Moreover, we calculate a doubling time of ~9.6 months, 
which compares well to 7.544 and 11.520 months, as re-
ported in the literature for mCRC. � has previously been 
estimated to be between 0.13 and 1.21/months for differ-
ent cancers, and our estimate of 0.33 compares well with 
these results.21,43,45

No unexplained trends could be seen in the diagnos-
tic plots for either treatment arm. The parameters of the 
two TTE models were estimated with acceptable preci-
sion, and the VPC Kaplan–Meier plots capture data well 
for both monotherapy and combination therapy. We tried 
estimating random effects on � and �, but it led to clear 
patterns in the EBEs and high shrinkage (95%).

F I G U R E  3   Prediction of PFS for panitumumab, FOLFOX, and FOLFOX + panitumumab treatment arms. Black lines are the observed 
PFS, gray lines the median prediction, and the blue areas a 95% confidence interval of the prediction. PFS, progression-free survival.

F I G U R E  4   Prediction of PFS for FOLFOX (upper row) and FOLFOX + panitumumab (lower row) treatment arms with truncated data. 
Data truncation is indicated in red. The black line indicates observed PFS, the gray line the median prediction, and the colored areas are 95% 
confidence intervals for the prediction. PFS, progression-free survival.
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Progression-free survival

The combined PFS model was able to describe the re-
corded PFS times for the population well, as can be seen 
in Figure  3. The proportion of PFS events between the 
patients of the PRIME study and the virtual patients was 
in good agreement. As we did not have data for panitu-
mumab as a monotherapy, we had to assume that the 
interaction effects between the two treatments were so 
small they could effectively be ignored. Both to evaluate 
this assumption and challenge the model's predictive ca-
pabilities, we predicted the PFS time for panitumumab 
given as a monotherapy and compared it with the results 
from the ASPECCT study. They found a median PFS 
time of ~5.5 months for 164 patients with wild-type RAS, 

which compares well with our prediction of 4.8 (4.3–5.7) 
months. Figure  3 also shows the observed PFS curve is 
well-predicted by our model. Thus, our results seem to be 
consistent with the hypothesis of negligible interaction 
effects.

Being able to predict the median PFS for panitumumab, 
using only data for FOLFOX and FOLFOX + panitu-
mumab, implies that it should also be possible to predict 
the result of the combination having only monotherapy 
data for both drugs (assuming no interaction effects). 
Thus, this type of PFS model can potentially be beneficial 
when determining which drugs to test in combination.

To further test the predictive capabilities of the model 
we re-estimated it with truncated data and made a for-
ward prediction of the PFS curve, median PFS, and hazard 
ratio. As can be seen in Figure 4, the confidence intervals 
become broader with less data, because the uncertainty 
in the parameter estimates is included in the PFS predic-
tions. The median predictions when the data was trun-
cated at 27 and 7 months can still be seen to be good for 
both treatment arms. The large confidence interval of the 
predictions from the model calibrated with data truncated 
at 3 months is mainly due to the inability to properly es-
timate the resistance parameter, which is to be expected 
given that only short time series were used.

As can be seen in Table 2, the hazard ratio predictions 
all cover the observed value, but none of them show a sig-
nificant difference between the treatments. This is most 
likely because the difference between the two treatments, 
in the subset of data we model, is not that large, and a sig-
nificant hazard ratio was not found in the raw data either. 
An interesting and clinically relevant next step could be to 
test this approach with data where the difference is larger, 
and then to estimate how early one could predict a sig-
nificant difference in hazard ratio. PFS-curve predictions 
indicate that the model could be calibrated with data from 

T A B L E  3   Weights of covariates.

SLD0 (RSE%) kg(RSE%) � (RSE%)
aFOLFOX 
(RSE%)

xAge – 1 × 10−2 (29) – 4 × 10−3 (37)

xAP 5 × 10−5 (27)

xHG −9 × 10−3 (5) −5 × 10−3 (29)

xLD −2 × 10−4 (23)

xLB 0.26 (5) 0.17 (25)

xPL – −2 × 10−3 (37)

xWBC – −3 × 10−2 (40)

xNRAS2,F – −2 (36)

BSV 0.4 0.44 1.0 0.36

Abbreviations: AP, alkaline phosphatase; BSV, between-subject variability; HG, hemoglobin; LB, lesions at baseline; LD, lactate dehydrogenase; PL, platelets; 
WBC, white blood cell.

T A B L E  2   Observed and predicted hazard ratios and median 
PFS.

Hazard ratio 
(95% CI) Mediana (95% CI)

Observed values

Full PRIME 
study

0.8 (0.67–0.95) 10 (9.3–11.4) vs. 8.6 (7.5–9.5)

Modeled  
data

0.89 (0.67–1.17) 10.5 (8.9–14) vs. 10 (8.2–11.9)

Data length 
(months)b Predicted values

All 0.92 (0.76–1.11) 9.1 (7.2–11.8) vs. 8.5 (6.9–10.9)

27 0.98 (0.83–1.17) 9.1 (7.3–11.8) vs. 9 (7.1–11.3)

7 0.95 (0.76–1.20) 8.9 (7.1–11.6) vs. 8.6 (6.9–11.2)

3 0.99 (0.79–1.31) 14 (8.9–24) vs. 13.5 (8.7.1–23)

Abbreviations: CI, confidence interval; PFS, progression-free survival.
aFOLFOX + Pani versus FOLFOX.
bTime when the data were truncated.
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a, for example, phase II study, and used to guide the design 
of the next phases of the drug development process.

Nagase et al.46 recently published an article detailing 
an analogous method for describing and predicting PFS 
based on a parametric multistate ordinary differential 
equation model. Instead of modeling the tumor dynam-
ics directly, they model the number of patients remain-
ing, with disease progression, dead, and censored, with 
the corresponding hazard rates as transition rates from 
one state to another. They highlight that, for example, a 
mixed effect TGI model could be incorporated into their 
approach to describe individual data. Thus, the research 
we present in this paper could perhaps facilitate this.

Alongside PFS, patient quality of life is an important 
consideration when testing new treatments. Winter et al.27 
have developed a joint modeling approach for linking pa-
tient dropout to health-related quality of life data. Based 
on our data, we have assumed that dropout follows a 
Weibull distribution. It could be interesting to investigate 
if a more descriptive model, akin to the one Winter et al. 
presents, could be incorporated into our framework.

Covariate analysis

To better understand why patients respond differently to 
treatments, we estimated the correlation between the pa-
tients' EBEs and their baseline covariate. We tested five 
ML algorithms to find potentially important covariates, 
and then used Monolix to estimate the weight of each co-
variate estimated with sufficient precision.

Searching among covariates indicated by the ML algo-
rithms gave similar results to when we used the automated 
covariate builder in Monolix. Both approaches explained 
~30% of the total IIV. The largest contribution came from 
SLD0, which does not affect TP according to our model. 
Thus, the clinical relevance of these results is not clear, 
and the next step could be to investigate more covariates 
(e.g., more genomic data), because 70% of IIV remains to 
be explained.

Our analysis shows the possibilities of combining the 
NLME framework with ML approaches to improve the 
quantification of intersubject variability. This could allow 
us to identify genomic profiles corresponding to the prob-
ability of response, leading to more accurate predictions 
when designing new studies, and facilitating personalized 
treatment on a subgroup or individual level.

CONCLUSIONS

We successfully calibrated a joint model using clini-
cal SLD and TTE data for the treatments FOLFOX and 

FOLFOX + panitumumab. Predictions with the model 
were performed on truncated data sets and led to good 
predictions of the entire PFS curve (40 months) using 
only 7 months of data. Moreover, predictions were also 
made for an external data set and the model was shown 
to have good predictive capabilities here as well. Thus, 
this modeling approach can potentially provide early in-
sights into the efficacy of new drug combinations and 
be used to support decision making. We also performed 
an ML-guided analysis to identify patient covariates 
related to treatment response. Several covariates were 
identified, and their importance was estimated with 
good precision.
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